
AD-A265 007

Scalable Spin Locks for Multiprogrammed Systems

R.W. Wisniewski, L. Kontothanassis, and M.L. Scott

Technical Report 454
April 1993

UNIVERSITY OFROCI-I 'R
COMPUTER SCIENCE

93-12087•a~~~~~~~~~~
~~~~ I ,,o l tAl~llltt!/t1ltli~ttltl,,,



III IIII I A ppI L

REPORT DOCUMENTATION PAGE 1OM 07040gM

€oeca @4 umonflaOA. l• 1S slqggUM Ca ort@•..q CA~s OWOA, CO wbnUWeQCOA I~eua• iprvwc. Ovw~ h mfOC•. Oemrbgm an. •se~ ;z ii z•rnq~Oubk Awa...e tu ,204. s htsrdwf , va ,22O24$2. onfo Co ,s . Osf, c . Aq, ."to v54 loawet .f9 Pao moeo Am auV a" 0 
(0vo4. fr.W. ' W nq" OC Wc.,.

I. AGENCY USE ONLY (Levo bdr,*) 2. REPORT DATE R. REPORT TYPE AND DATES COVERED
April 1993 technical report

.TTLE ANO suumLi S. FUNDING NUMBERS
Scalable Spin Locks for Multiprogrammed Systems N00014-92-J-1801

. AUTHOR(S)

Robert W. Wisniewski, Leonidas I. Kontothanassis, and
Michael L. Scott

7. PERFORMING ORGANIZATION NAM•E(S) AND AOORESS(ES) . PERFORMING ORGANIZATION

Computer Science Dept. RePORT NUM41R

734 Computer Studies Bldg. TR 454
University of Rochester
Rochester, NY 14627-0226

9. SPONSORING/MONITORING AGENCY NAME(S) AND AOORESS4ES) 10. SPONSORINGI MON.... NG

AGENC REPORT NUMBER

Office of Naval Research
Information Systems
Arlington, VA 22217

11. SUPPLEMENTARY NOTES

ii,. OWSrRIUTON/AVAILA6IUrV STATEMENT 12"L DISTRIOUTION CODE

Distribution of this document is unlimited.

13. ABSTRACT (Maximum 200 words)
Synchronization primitives for large-scale multiprocessors need to provide low

latency and low contention to achieve good performance. Queue-based locks (implemented
in software with fetch and - instructions) can greatly reduce contention and improve
overall performance by arranging for processors to spin only on local locations.
Unfortunately, queued locks exhibit poor behavior in the presence of multiprogramming:
a proc.ess near the end of the queue, in addition to waiting for any process that is
preempted during its critical section, must also wait for any preempted processes
ahead of it in the queue.

To solve this problem, we present two queue-based locks that recover from in-
queue preemption, The first employs the kernel interface of the NYU Symunix project.
The second employs an extended interface that shares information in both directions
across the user-kernel boundary, resulting in simpler code and better performance.
Experiments with these locks in both real and synthetic applications on SGI and KSR
multiprocessors confirm the feasibility of high-performance software locks on systems
that are both very large and multiprogrammed.

14. SUBJECT TERMS IS. NUMBER OF PAGES
12scalable spin locks; multiprogramming; synchronization 1I. PRICE CODE

17. SICUXJTV CLASSIFICATION 10. SECURITY CLASSIFICATION 19. SECURITY CIASSIFICATION 20. LIMITATION OF AISTRACT
OF REPORT Of THIS PAGE OF Agi•7""T

unclassified unclassified unclassified UL
NSN 7S40-01-280-500 Standard Form 298 (Rev 2-89)

,ý, bple AftI %to M14-



SCLAIMIEN}TC

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.



Scalable Spin Locks for Multiprogrammed Systems

Robert W. Wisniewski and Leonidas Kontothanassis and Michael L. Scott*

Computer Science Department
University of Rochester

Rochester, NY 14627-0226

TR 454

April 1993

Abstract

Synchronization primitives for large scale multiprocessors need to provide low latency and low con-
tention to achieve good performance. Queue-based locks (implemented in software with fetch.and_)
instructions) can greatly reduce contention and improve overall performance by arranging for processors
to spin only on local locations. Unfortunately, queued locks exhibit poor behavior in the presence of multi -
programming: a process near the end of the queue, in addition to waiting for any process that is preempted
during its critical section, must also wait for any preempted processes ahead of it in the queue.

To solve this problem, we present two queue-based locks that recover from in-queue preemption. The
first lock employs the kernel interface of the NYU Symunix project. The second employs an extended
interface that shares information in both directions across the user-kernel boundary, resulting in simpler
code and better performance. Experiments with these locks in both real and synthetic applications on SGI
and KSR multiprocessors confirm the feasibility of high-performance software locks on systems that are
both very large and multiprogrammed.

1 Introduction

Many parallel applications are written using mutual exclusion locks. When processors are uniprogrammed or
when the expected waiting time for a lock is less than twice the context switch time, spinning in anticipation
of acquiring a lock is more efficient than rescheduling. As a result, busy-wait (spinning) mutual exclusion
locks are very widely used.

Unfortunately, spin locks suffer from two serious problems:

1. Both the common test.-andset lock, and its variant, the read-polling test-and-test-and-set lock,
suffer from severe performance degradation as the number of processors competing for the lock increases.

2. In multiprogrammed systems, a process that is preempted during its critical section can delay the
progress of every other process that needs to acquire the lock.

*This work was supported in part by NSF Institutional Infrastructure award number CDA-8822724, NSF grant number CCUI-
9005633, and ONR research contract number N00014-92-J-1801 (in conjunction with the ARPA Research in Information Science
and Technology-High Perf',rmance Computing, Software Science and Technology program, ARPA Order No. 8930).



To address the first of these problems, several researchers have devised queue-based locks in which every
process spins on a different, local location, essentially eliminating contention [1, 7, 121. To address the secoid
problem, several operating systems have incorporated schemes in which applications communicate with the
kernel scheduler to prevent [6] or recover from [3] preemption in a critical section, or to avoid entering a critical
section when preemption is imminent [11]. What has not been clear from previous work is how to solve both
problems at once.

The various mechanisms for dealing with preemption can all be applied in a straightforward manner to
programs using (test-ad..)test-.and-set locks, resulting in good performance. Their application to prograrms
using queue-based locks is much less straightforward. None of [3], [6], and [111 discusses queue-based locks,
and [121 explicitly recommends non-queue-based locks for multiprogrammed environments.

Our contribution in this paper is to demonstrate that simple extensions to the interface of a preemptive
scheduler can be combined with an appropriately-designed queue-based lock to provide excellent performance
on systems that are both very large (with a high degree of competition for locks) and multiprogrammed.
We discuss related work in more detail in section 2, touching on scalable spin locks, multiprogramminv of
mu!tiprocFor, and synchronization-sensiLive scheduling. IVe present our algorithms in section 3, with a
focus on scheduler interfaces resembling that of Symunix [6], and locks resembling those of Mellor-Crummey
and Scott [12]. We present empirical results in section 4, comparing the performance of a variety of locks on
a variety of workloads, applications, and machines. Our conclusions appear in section 5.

2 Related Work

2.1 Scalable Spin Locks

Active sharing of memory locations is the principal obstacle to scalability in spin locks. When two processes
spin on the same location, coherence operations or remote memory references (depending on machine type)
create substantial amounts of contention for memory and for the processor-memory interconnect. The key to
good performance is therefore to minimize active sharing.

The queue-based spin locks of Anderson [11 and of Graunke and Thakkar (71 minimize active sharing on
coherently-cached machines by arranging for every waiting processor to spin on a different element of an array.
Each element of the array lies in a separate cache line, which migrates to the spinning processor. In Anderson's
lock, each waiting processor uses a fetch..and..add operation to obtain the index of the array element on which
it is to spin. To release the lock, it toggles the state of the next (circularly) higher element of the array. In
Graunke and Thakkar's lock, each waiting processor uses a fetch-and.store operation to obtain the index of
an array element permanently associated with the previous holder of the lock. To release the lock, it toggles
the state of its own (permanently associated) element, which will in turn be polled by the next processor to
acquire the lock.

The queue-based spin lock of Mellor-Crummey and Scott [12] represents its queue with a distributed linked
list instead of an array. Much as in Graunke and Thakkar's lock, each waiting processor uses a fetch.and-store
operation to obtain the address of the list element (if any) associated with the previous holder of the lock.
In this case, however, it modifies that list element to contain a pointer to its own element, on which it then
spins. Because it spins on a location of its own choosing, a process can arrange for that location to lie in local
memory even on machines without coherent caches.

2.2 Multiprogramming Multiprocessors

A multiprocessor that is to run more than one parallel application can be scheduled in any of several ways.
including pure time-slicing (in which all processes of all applications compete equally and chaotically for
physical processors), coscheduling (in which the scheduler attempts to ensure that all processes of a given
application run simultaneously), and processor partitioning (in which each application is given exclusive use of
a subset of the processors of the machine for an extended period of time). A growing body of evidence [2, 5, 10,
15, 16] suggests that throughput is maximized by a processor-partitioned environment in which each application
runs exactly one process per processor. In such an environment, or in one that employs coscheduling, all the
processes that share a given lock will always run simultaneously. Unfortunately, this ideal situation (from the
point of view of synchronization) is not always easy to arrange.

2



type context-block = record
preemptable, // set by user; read by kernel
warning : Boolean // set by kernel; read by user

type multi-flag = (not.yet. can-go, got-it, lost-it, ack, nack)
type qnod. - record

prod, next :qnode
next-done Boolean
status :ultiflag

type lock : qnode

private cb -context-block;

Figure 1: Declarations for the Queued-Handshake lock.

Accommodating the computing needs of applications amounts tL a two-dimensional bin-packing problem
(processors x time). It is complicated by the fact that neither the set of applications nor the number of
processors a given application can fruitfully employ is static. If applications are not able to adjust their
number of processes to match the number of available processors, processes may sometimes be preempted
while others with which they share a lock continue to run. In such an environment, the possibility arises that
running processes will busy-wait for action on the part of a prvcess that is not running.

2.3 Synchronization-Sensitive Scheduling

When locks are used to protect lengthy critical scctions, rescheduling may be preferable to busy-waiting. Ap-
plications that use locks to protect both long and short critical sections can use on-line adaptive algorithms
to guess whether it is better to spin or reschedule in a given situation [9]. The possibility of preemption, how-
ever, introduces tremendous variance in the apparent length of critical sections, and makes on-line adaptation
impractical. To address this problem, several researchers have invented forms of synchronization-sensitive
scheduling.

The Scheduler Activation proposal of Anderson et al. [3] allows a parallel application to recover from
untimely preemption. When a processor is taken away from an application, another processor in the same
application is given a software interrupt, informing it of the preemption. The second processor can then
perform a context switch to the preempted process if desired, e.g. to push it through its critical section. In a
similar vein, Black's work on Mach [4] allows a process to suggest to the scheduler that it be descheduled in
favor of some specific other process. If lock data structures indicate which process holds the lock, a process
that spins "too long" may guess that the lock holder is not running, and can offer to give it its processor.

Rather than recover from untimely preemption, the Symunix system of Edler et al. [6] and the Psyche
system of Marsh et al. [11] provide mechanisms to avoid or prevent it. The Symunix scheduler allows a
process to request that it not be preempted during a critical section, and will honor that request, within
reason. The Psyche scheduler provides a "two-minute warning" that allows a process to estimate whether it
has enough time remaining in its quantum to complete a critical section. If time is insufficient, the process
can yield its processor voluntarily, rather than start something that it may not be able to finish.

For test-andcset and test-and.test-and.set locks, synchronization-sensitive scheduling need only ad-
dress the possibility of preemption during a critical section. For queue-based locks, however, it is also crucial
to consider the possibility of preemption while waiting to acquire the lock, since no process later in the queue
will be able to acquire the lock until all earlier processes have done so. In the following section we present

queue-based spin locks that ensure scalability by spinning only on local locations, while also interacting with
the scheduler in such a way that no process waits for a process that isn't running. Our code is based on the C1

Symunix scheduler interface, and on the spin lock of Mellor-Crummey and Scott, though it should also be 01
possible to devise solutions based on the scheduler interfaces of Scheduler Activations, Mach, or Psyche, or
the spin locks of Anderson or Graunke and Thakkar.

h ' i ' ton/

A 13 ty ro



3 Algorithms

In this section we present two locks. Both are extensions of the list-based queuing lock of Mellor-Crummey
and Scott. Both employ the Symunix mechanism to prevent preemption in a critical region. The first uses a
handshaking technique to avoid giving a lock to a process that is not running. The second obtains simpler and
faster code by using an extended kernel interface, wherein the scheduler maintains user-readable flags that
specify which processes are running and whether it desires not to be preempted.

The first, handshaking lock appears in figures 1 and 2. As in the original list-based queuing lock, parameter
I of acquire-lock and release-lock points to a quode record allocated (in an enclosing scope) in shared
memory locally-accessible to the invoking processor. The compare-and-swap instruction returns true if it
successfully replaced the value specified by its second argument with the value specified by its third argument.

The Symunix interface makes it easy to prevent preemption in the critical section. However, to avoid giving
the lock to a preempted process in the queue, we designed a handshaking algorithm between the releasing and
acquiring processes. A pi-vcess releases a lock by notifying its successor process in the queue. If the successor
does not promptly acknowledge the notification by setting a flag in the releaser's qnode, the releaser assumes
the successor is blocked. It rescinds the successor's notification, and proceeds to the following process. To
avoid a timing window, both the releaser and the successor access the successor's notification flag with atomic
fetch and.store instructions. If the successor sees its notification just before the releaser attempts to rescind
it, the releaser can tell what happened. In either case, the successor waits for a final ACK or NACK from the
releaser before proceeding, to avoid changing qnode fields that the releaser is still reading.

To handle preemption in a queue based lock, two types of information are needed. The kernel needs to be
aware when a process is about to enter a critical section, and the library code implementing the lock needs to
know the status of processes in the application. To avoid the complexity and cost of handshaking, we propose
that the preemptive scheduler for a multiprocessor ,xplicitly indicate which processes are currently running.
In place of the preemptable Boolean flag in a process's context block, we propose a state variable with
several possible values. By accessing this state variable with a compaze-and-swap instruction, thL kernel can
atomically change a process from preemptable to preempted. Similarly, the releaser of a lock can atomically
change a process from preemptable to unpreemptable.

A lock that uses this mechanism appears in figure 3. To close a timing window, we actually need four values
of the process state variable. Two of these distinguish between a process that has made itself unpreemptable,

and a process that has been made unpreemptable by its predecessor in the lock queue.
As in Symunix, the kernel maintains ultimate control of the processor by refusing to honor a request for

non-preemption more than once per quantum. This implies that critical sections need to be shorter than the

extension given to the process by the kernel. When giving a time extension, the kernel sets a warning flag,
which it clears at the beginning of each quantum. When exiting a critical section, a process needs to yield if
the warning flag is set.

A caveat with both of the locks just described is that they give up the FIFO ordering of the original
list-based queuing lock. It is thus possible (though unlikely) that a series of adverse scheduling decisions
could cause a process to starve. If this became a problem it would be possible to modify our algorithm to
leave preempted processes in the queue, rather than removing them. The drawback of this approach is that
preempted processes might be checked many times before actually acquiring the lock. Alternatively, taking
our lead from Black's work, we could have the acquirer of a lock give its processor to its successor in the lock
queue, if that successor were currently blocked. The drawback of this approach is that it entails additional
context switches, and violates processor affinity [14].

4



procedure acquire-lock (L : -lock, I : -qnode)
loop

I->next := nil
cb->preemptable := false

I->pred :- fetch.and.store (L, I)
if I->pred * nil

return
I->status : not.yet

I->pred->next := I
repeat

cb->preemptable true
if cb->warning // kernel wanted to preempt me

yield

cb->preemptable : false
while I->status = not-yet // spin
val : multi-flag := fetch.and.store (1->status, got-it)

if val = can-go
I->pred->next.done := true // tell prod I'm done with its qnode

repeat'until I->Status - r=k // let prod finish using my qnode
return

while val != nack
val :. I->status

procedure releaselock (L : -lock, I: -qnode)
if I->next = nil // no known successor

if compare.and-suap (L, I, nil)
goto rtn

repeat while I->next - nil // spin
I->next-done := false
loop

I->4ext->status :a can-go

for i in 1..TIMEOUT // spin
if I->next.done

I->next->status :: ack

goto rtn
if fetch-and.store (I->next->status, lost-it) = got-it

// oh! successor was awake after all

repeat until I->next.done
I->next->status :- ack
goto rtn

succ : -qnode := I->next->next
if succ = nil

if compare-and..sap (L, I->next, nil)
I->next->status := nack
goto rtn

repeat while (succ :u I->next->next) nil // spin; probably non-local
I->next->status := nack

I->next := succ

succ->pred : I
cb->preemptable true

rtn:

if cb->warning // kernel wanted to preempt me
yield

Figure 2: Queued-Handshake lock for the Symunix kernel interface.



type context.block v record
state : (preempted, preemptable, unpreeuptable.self, unpreemptableoother)
earning Boolean

type qnode * record
self -context-block
next :qnode
next-done : Boolean
status (waiting, success, failure)

type lock "qnode

private cb "context-block;

procedure acquire-lock(L : -lock, I : -qnode)
repeat

I->next :2 nil
I->self :n cb
cb->state :- unpreemptable-self
pred : -qnode := fetch.and-store (L, I)
if prod - nil

return
I->status :W waiting
pred->next :- I
(void) compare.and-swap (kcb->state, unpreomptable-self, preemptable)
repeat while I->status = waiting // spin

until I->status X success

procedure release.lock (L : 'lock, I : "qiode)
shadow : "qnode := I
candidate : "qnode :- sbadow->next
if candidate = nil

if compare-and-swap (L, shadow, nil)
return // no one waiting for lock

candidate := shadow->next
loop

vhile candidate = nil // spin; probably non-local
candidate :- shadow->next

// order of following checks is important
if compare.and-swap (*candidate->self->state,

unpreemptable-self, unpreemptable-other)
or compare-and.swap (Ucandidate->self->state,

preemptable, unpreemptable.other)
candidate->status :- success
exit // leave loop

// else candidate seems to be blocked
shadow :- candidate

candidate := shadow->next
shadow->status := failure
if candidate = nil

if compare.and.swap (L, shadow, nil)

exit 1/ leave loop
cb->state := preemptable

if cb->warning
yield

Figure 3: Code for the Smart-Q lock.

6



4 Experiments and Results

We studied each lock implementation on three different programs. The first was a synthetic program that
allowed us to extensively explore the parameter space. To verify the results we obtained from the synthetic
program two real programs were run-Cholesky from the SPLASH suite and a multiprocessor version of
Quicksort. The two programs were good candidates for examining the effectiveness of the locks since this is
the only form of synchronization they use. The rest of this section describes the experimental environment,
the different types of locks we implemented, and the performance results for different parameter values.

4.1 Methodology

We implemented eight different locks:

TAS - A standard test-and-test-and.-set lock that polls a lock's value and attempts to acquire it when it
is free.

TAS-no-preempt - A test-and-test-and-set lock in which the section is marked as non-preempiable, using
the approach described by the Symunix developers.

Queued - A queued lock with local-only spinning.

Queued-no-preempt - An extension to the queued lock that prevents preemption while in the critical
section.

Queued-Handshaking - Our extension to the queued lock that uses the Symunix kernel interface, and
employs handshaking to ensure the lock is not transferred to a preempted process.

Smart-Q - Our better queued lock, with two-way sharing of information between the kernel for simpler code
and lower overhead than the Queued-Handshaking lock.

Native - A lock employing machine-specific hardware (the synchronization bus on the SGI; extra cache states
on the KSR). No consideration for preemption is taken. This is the standard lock that would be used
by a programmer familiar with the machine's capabilities.

Native-no.preempt - An extension to the Native lock that prevents preemption while in the critical section.

The machines we used were a Silicon Graphics Iris 4D/480, with 8 processors, and a Kendal Square
Research KSRI, with 32 procensors

The queued locks require both fetch-and-store and compare-and-swap, primitives not available on the
SGI or KSR. We implemented a software version of these atomic instructions using the native spinlocks. We
also used the native spinlocks to implement test.and..set. This approach is acceptable as long as the time
spent in the critical section protected by the higher-level lock is longer than the time spent simulating the
execution of the atomic instruction. This was true for all the experiments we ran, so the results should be
comparable to what would happen with hardware fetch-and-+ instructiorns.

We studied each lock implementation on three different applications. The first was a synthetic program in
which each process executes a simple loop containing a critical section. The total number of loop iterations
is proportional to the number of executing processes. Within the critical section, each process decrements a
shared counter that indicates the total number of iterations remaining in the experiment; it exits when this
counter reaches zero.

When using the synthetic program we were able to control four dimensions of the parameter space: multi-
programming level, number of processors, relative size of critical and non-critical sections, and quantum size.
The first two parameters were found to have the greatest impact on performance; they are the focus of the
next two sections.

To verify the results we obtained from the synthetic program, we also ran two real programns--Cholesky
from the SPLASH suite [13] and a multiprocessor version of Quicksort. These two programs were good
candidates for examining the effectiveness of the locks since this is the only form of synchronization they use.

In all the experiments an additional processor (beyond the reported number) is dedicated to running a
user-level scheduler. Data to be shared between the "kernel" and the user is created with shmget- Worker

7



70 Simw1. Q 320 S.Wi. Q
Q •0 Sto Qp,*pt

40 P --

so

-poesrSI Irs.3-pocsorKS1

40 IRS no..P- 160 . op ,t

20 H. --- -Pt -

Figure 4: Varying Multiprogramming Levels on a Figure 5: Varying Multiprogramming Levels On a
7-processor SGI Iris. 31-processor KSRl.

processes are created with fork. The scheduler preempts a process by sending it a Unix signal. Each worker
process catches this signal; the handler spins on a per-process flag, which the scheduler clears at the end of
the "de-scheduled" interval. Implementation of our ideas in a kernel-level schediler would be straightforward,
but was not necessary for our experiments. (We also lacked the authorization to make kernel changes on the
KSR.) To reduce the possibility of lock-step effects, we introduced a small amount of random variation in
quantum lengths and the lengths of the synthetic program's critical and non-critical code sections.

The multiprogramming levelreported in the experiments indicates the number of processes per processor. A
multiprogramming level of 1.0 indicates one worker process for each available processor. A multiprogramming
level of 2.0 indicates one additional (simulated) process on each available processor. Fractional multiprogram-
ming levels indicate additional processes on some, but not all, of the processors.

4.2 Varying the Multiprogramming Level

Figures 4 and 5 show the running time for a fixed number of processors (7 on the SGI and 31 on the KSR)
while varying the multiprogramming level.

On the SGI, the scheduling quantum is fixed at 20 ms, the critical section length at approximately 15 ps,
and the non-critical section length at approximately 150 is. Because the ratio of critical to non-critical work
is 1:10, while only 7 processors are running, the critical section does not constitute a bottleneck. Processes
are able to use almost all of their cycles for "useful" work, rather than waiting for the lock, and completion
time has a tendency to increase linearly with an increase in the multiprogramming level, as processes rect've
smaller and smaller fractions of their processors. The Queues and Queucd-no.preempt locks, however,
show much greater degradation, as processes begin to queue up behind a de-scheduled peer. Preventing
preemption in the critical section helps a little, but not much: preemption of processes waiting in the queue
is clearly the dominant problem. Much better behavior is obtained by preventing critical section preemption
and ensuring that the lock is not given to a blocked process waiting in the queue: the Queued-Handshaking
and Smart-Q locks pcrform far better than the other Queued locks, and also outperform the standard TAS
lock. They do not outperform the TAS-no-preempt lock on the SGI, but only because the small number
of processors available does not give the contention-reducing property of queuing an opportunity to overcome
the lower constant overhead of TAS. As one would expect, the native lock performs best of all (the other locks
are built on top of it, after all), though only when modified (Native-no..preeXupt) to prevent preemption in
the critical section.

On the KSR, 31 processors were available, so a 1:10 ratio of critical to non-critical wok would lead to an
inherently serial program. We therefore dropped the ratio far enough to eliminate serialization. Quantum

8



Work:Crit. Sec. Multiprog. Work I Acquire Crit. Sect. Release Preempied Time(sec)
16.7 1.0 5.7( 1 90.9% 1.2% 2.0% 0% 49.3
16.7 1.4 6.' , 67.7% 1.3% 5.5% 19.3% 46.0
16.7 2.0 .. 7% 34.6% 1.8% 6.5% 49.3% 36.3
66.7 1.0 23.8% 72.5% 1.3% 2.2% 0% *4.7
66.7 1.4 27.7% 45.5% 1.6% 5.5% 19.70/ 38.2
66.7 2.0 35..1% 8.0% 2.0% 5.7% 49.1% 30.2
120 1.0 56.0% 39.4% 1.8% 2.8% 0% 34.5
120 1.4 63.7% 8.8% 2.1% 5.6% 19.6% 30.4
120 2.0 43.0% 2.7% 1.3% 3.0% 49.8% 44.0

Table 1: Breakdown of execution time for the TAS-no-preempt lock

length remained the same. The results show a somewhat different behavior when compared to the SGI
results. The Queued and Queued-no-preempt locks suffer a high performance hit as the multiprogramming
level increases. The Queued-Handshaking lock improves performance considerably since it eliminates both
the critical section and queue preemption problems. The handshaking algorithm however requires several
remote references and the penalty paid on the KSR is high enough to make the lock suffer a performance hit.
The Smart-Q lock performs better than all other queued or test-and.set locks since it avoids critical section
preemption, ensures that the lock is not given to a preempted process and incurs only little overhead in doing
so. Again as expected, the Native-no-preempt lock performs the best of all.

The lock with the most surprising behavior is the TAS-no-preempt. While all other locks become worse
as the multiprogramming level increases, the TAS-no-preempt lock improves in performance. In order to
explain this we profiled the execution of the synthetic program to determine the breakdown of execution time.
As can be seen in table 1 most of the time is spent in the acquire routine. The reason for this is that the high
contention experienced by the lock effectively increases the portion of time spent in serial work. Introducing
multiprogramming reduces contention and consequently the amount of serial work in the program. This
effect results in an actual performance improvement, even though there are fewer total available cycles to the
application. As the multiprogramming level increases even more the reduction in contention cannot offset the
reduction of available cycles and the performance starts to degrade again. At high multiprogramming levels
the reduction in contention can be high enough to actually make the TAS-no-preempt lock perform better
than the Smart-Q lock, but we see no reason why anyone would run parallel applications in such a severely
time-sliced environment.

4.3 Varying the Number of Processors

The intent of increasing the number of processors working in parallel is to increase the amount of simultaneous
work occurring. However, if the programs need to synchronize, considerable contention can develop for the lock.
Previous work has shown that queue locks improve performance in such an environment, but as indicated by
the graphs in figures 4 and 5 they can experience difficulties under multiprogramming. The graphs in figures 6
and 7 show the effect of increasing the number of processors on the different locks at a multiprogramrmng
level of 2.0.

Because the synthetic program runs a total number of loop iterations proportional to the number of proces-
sors, running time does not decrease as processors are added. Ideally it would remain constant, but contention
and scheduler interference can cause it to increase. With quantum size and critical to non-critical ratio fixed
as before, results on the SGI again show the Queued and Queued-no-preempt locks performing very badly,
as a result of untimely preemption. The performance of the TAS and Native locks also degrades with ad-
ditional processors, as a result of contention. The Smart-Q, TAS-no-preempt, and Native-no.-preempt
locks display more-or-less even performance, with overhead highest for Smart-Q.

The results on the KSR resemble those on the SGI, except that the larger number of processors and the
higher cost of remote operations allow the Smart-Q lock to overtake the TAS-no.preempt lock. The native
locks, with and without modifications to deal with preemption, perform the best of all. One likely reason why

9



100

90

so

M tiýe __o p tl 50....

3 4 16 5 10 1IS j
.. b.r of prf -V--or. P roc ... !

Figure 6: Varying the Number of Processors on Figure 7: Varying the Number of Processors on
the SGI Iris (multiprogramming level = 2). the KSR1 (multiprogramming level = 2).

they perform comparatively better than the native locks on the SGI is that the ring-based interconnection
topology of the KSR provides the native locks with an almost queue-like behavior. When released, a lock will
migrate to the next requesting processor on the ring, without excessive amounts of contention.

4.4 Results for Real Applications

To verify the results obtained from the synthetic program, we also measured the performance of a pair of real
lock-based applications. Figure 8 shows the completion times of these applications, in seconds, when run with
a multiprogramming level of 2.0 using 7 processors on the SGI and 31 processors on the KSR. Both sets of
graphs confirm the conclusions reached from the synthetic program. The Smart-Q lock outperforms all but
the Native-no-preempt lobk in all cases.

5 Conclusions

There are three primary contributions of this paper. First, it demonstrates the need for queue-based locks to
be extended to environments with both high levels of contention and preemption due to multiprogramming.
Second, it presents an algorithm based on the Symunix model that accomplishes this by preventing critical
section preemption and by ensuring that a lock is not given to a blocked process in the queue. Third, it shows
that by sharing appropriate information between the scheduler and application processes, we can make the
lock both simpler and faster.

Our work suggests the possibility of using kernel-user sharing for additional purposes. We are interested,
for example, in using it to help manage resources such as memory. We are also interested ;n studying the
effect of scheduler information in systems where priorities are important, i.e., real-time applications.

The ability to implement our locks testifies to the flexibility of fetch-and-. instructions. The ease with
which such instructions can be implemented, and their utility in other areas (e.g. wait-free data structures [8D)
makes them a very attractive alternative to special-purpose synchronization hardware. The native locks of
the KSR1, for example, are faster than the Smart-Q lock, but not by very much. Whethcr they are worth
the effort of implementation probably depends on the extent to which they complicate the construction of the
machine.

10

ci



SGI KSR

Cholesky
TAS . ! [ ___ ...____

TAS-no-preempt
Queued (_ .. I , , ' TT! 64.2

Queued-no-preempt 1 59.7
Queued-Handshaking I

Smart-Q I
I I I

Native I' I I i
Native-no-preempt I I I "

8 16 24 10 20 30

Quicksort I i I , II i I !

TAS ____,___
TAS-no-preempt , I

Queued ,-_ ________ ./_,_142.0 _ __ ___ _, 13287
Queued-no-preempt -, ,t 78.0 I 13252

Queued-Handshaking I "
I ISmart-Q [- ,~

I I . . . .

Native
Native-no.preempt -I '

16 32 48 20 40 60

Figure 8: Completion times (in seconds) of real applications on a 7-processor SGI Iris and a 31-processor
KSR1 (multiprogramming level = 2).

Acknowledgements

We would like to thank the Cornell Theory Center for the use of their KSR1 that allowed us to validate our
hypothesis on a large scale multiprocessor.

References

[1] T. E. Anderson. The Performance of Spin Lock Alternatives for Shared-Memory Multiprocassors. IEEE
Transactions on Parallel and Distributed Systems, 1(1):6-16, January 1990.

[2] T. E. Anderson. Operating System Support for High Performance Multiprocessing. Ph. D. thesis, TR
91-08-10, Department of Computer Science and Engineering, University of Washington, August 1991.

[3] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy. Scheduler Activations: Effective Kernel
Support for the User-Level Management of Parallelism. ACM Transactions on Computer System.,
10(1):53-79, February 1992. Originally presented at the Thirteenth ACM Symposium on Operating
Systems Principles, 13-16 October 1991.

[4] D. L. Black. Scheduling Support for Concurrency and Parallelism in the Mach Operating System.
Computer, 23(5):35-43, May 1990.

r 11

t.



[5] M. Crovella, P. Das, C. Dubnicki, T. LeBlanc, and E. Markatos. Multiprogramming on Multiprocessors.
In Proceedings of the Third IEEE Symposium on Parallel and Distributed Processing, pages 590-597,
December 1991.

[6] J. Edler, J. Lipkis, and E. Schonberg. Process Management for Highly Parallel UNIX Systems. In
Proceedings of the USENIX Workshop on Unix and Supercomputers, Pittsburgh, PA, 26-27 September
1988. Also available as Ultracomputer Note #136, Courant Institute, N.Y. U-, April 1988.

[7] G. Graunke and S. Thakkar. Synchronization Algorithms for Shared-Memory Multil.:ocessors. Com-
puter, 23(6):60-69, June 1990.

[8] M. Herlihy. Wait-Free Synchronization. ACM Transactions on Programming Languages and Systems,
13(1):124-149, January 1991.

[9] A. R. Karlin, K. Li, M. S. Manasse, and S. Owicki. Empirical Studies of Competitive Spinning for a
Shared-Memory Multiprf..cessor. In Proceedings of the Thirteenth A CM Symposium on Operating Systems
Principles, pages 41-55, Pacific Grove, CA, 13-16 October 1991. In ACM SIGOPS Operating Systems
Review 25:5.

[10] S. T. Leutenegger and M. K. Vernon. Performance of Multiprogrammed Multiprocessor Scheduling
Algorithms. In Proceedings of the 1990 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, Boulder, CO, 22-25 May 1990.

[11) B. D. Marsh, M. L. Scott, T. J. LeBlanc, and E. P. Markatos. First-Class User-Level Threads. In
Proceedings of the Thirteenth ACM Symposium on Operating Systems Principles, pages 110-121, Pacific
Grove, CA, 14-16 October 1991. In ACM SIGOPS Operating Systems Review 25:5.

[12] J. M. Mellor-Crummey and M. L. Scott. Algorithms for Scalable Synchronization on Shared-Memory
Multiprocessors. ACM Transactions on Computer Systems, 9(l):21-65, February 1991.

[13] J. P. Singh, W. Weber, and A. Gupta. SPLASH: Stanford Parallel Applications for Shared-Memory.
ACM SIGARCH Computer Architecture News, 20(1):5-44, March 1992.

[14] M. S. Squillante. Issues in Shared-Memory Multiprocessor Scheduling: A Performance Evaluation.
Ph. D. thesis, TR 90-10-04, Department of Computer Science and Engineering, University of Washing-
ton, October 1990.

[15] A. Tucker and A. Gupta. Process Control and Scheduling Issues for Multiprogrammed Shared-Memory
Multiprocessors. In Proceedings of the Twelfth ACM Symposium on Operating Syst,;ms Principles, pages
159-166, Litchfield Park, AZ, 3-6 December 1989. In ACM SIGOPS Operating Systems Review 23:5.

[16] 3. Zahorjan and C. McCann. Processor Scheduling in Shared Memory Multiprocessors. In Proceedings
of the 1990 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer
Systems Computer Systems, pages 214-225, Boulder, CO, 22-25 May 1990.

12


